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ASYMPTOTIC SOLUTIONS OF CONTACT PROBLEMS OF ELASTICITY THEORY 
FOR MEDIA INHOMOGENEOUS IN DEPTH* 

S.M. AIZIKOVICH 

There are considered the dual integral equations generated by contact problems for 
half-spaces and half-planes inhomogeneous with depth. There is extended the method 
from /l/ for the construction of asymptotic solutions of the problems under consid- 
eration. Correctness of classes and the solvability of equations are established, 
and the approximate method proposed for their solution is given a foundation. 

1. Contact problems for half-spaces and half-planes ix-homogeneous with depth reduce, in 
a number of cases /i-44/, to finding the solution of a dual integral equation of the form (h 
is a geometric parameter) 

~*(a)P(a)L~).)LJ(a,;c)~~=-f(:c), jz[<l (1.1) 

r T(a)B(a, z)da=O, Ix]> 1 

In particular, in the problem of shear of an inhomogeneous half-space by a stamp /2/ 
(problem 1) and in the problem of impression of a stamp in an inhomogneous half-plane (problem 

2) p (a) = 1 a I-l, B (a, r) = Ziax, c = -d = 00 

where (1.1) is considered with the additional condition 

? m 

s 
r(Z)dr=P, T(Z)=& 

s 

t 
7' (a) e-iaxd~, 

s 
~(E)e'akdf= T(a) (1.2) 

-1 -02 -1 

and P is the shearing force (problem 1) or the impressing force (problem 2) acting on unit 

length of stamp. Find T(X). 

For problems on the torsion by a circular stamp /3/ (problem 3) and on the impressionof 

a circular stamp in an elastic half-space that is inhomogeneous with depth /4/ (problem 4) 

p (a) = a-', B (a, 5) = aJk (ax), c = 0, d = 00 

k = 1 for problem 3, andk = Ofor problem 4. Find T(X). Here 

T(z)=fZ'(a)aJ,(a.r)dc, T(c)=ir(p)Jl(ap)pdp 
0 0 

Upon satisfying the conditions 

min G(y)>cl>O, max G(y).<c<-~ 
uao, =) l/E(O> a) 

lb G(y)=const (problems 1 and 3) 
U-m 

min 13 (Y) > cl 0, max 8 00 
baa. -1 

> (y) <c < 
uao. -) 

0 6) = 2P (I/) P (I/) + CL (Y)l 

[h(Y) + 2P (Y)l 
limCl(Y)=const (problems 2 and 4) 
I-" 

where G(y) is the shear modulus and p(Y) and h(y) are Lan& coefficients of the half-space,and 

Y is the distance from the surface of the medium, it can be shown /2-4/ that the transforms 

of the kernel ~(u)possess the following properties (B and D are constants): 
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Solutions of contact problems for media inhomogeneous in depth 117 

L (u) = A + B 1 u 1 + 0 (ua), u -+ 0 (1.3) 

L (u) = 1 + D 1 u 1 -I + 0 (u-“), u + Q) (1.4) 

A = limC(O)C-'(!I) (problems 1,3) A = lim 0(0)&r(y) (problems 2,~) (1.5) 11~” U-m 

For multilayer media the properties of the compliance functions, analogous to (1.5), were 
noted in /5/. The properties (1.5) mean that the value L (0) for the problemsunder considera- 
tion is independent of the manner in which the elastic moduli vary in the half-space from Y= 0 
to t/-m, and are determined only by their values for Y= 0 and y- 0~. Graphically this ap- 
pears as follows: if the set of curves describing certain laws of variation of the elastic 

moduli with depth have identical values on the surface of the half-space and as y-w, then the 
graphs of the corresponding transforms L(U) of problems 1 and 3 will issue from a common point 
L(O)= A and converge at one point r,(m)= 1, 

Let us introduce the following definitions: 

Definition 1,l. The function L(U) belongs the class & if L (ail) has the form 

L (ah) = LN (ah) = fi (a” + Ai%-‘) (aa + B,ah-a)-1 
i-1 

(Bi - Bk,)C/i - Ak) # 0 

(1.6) 

Here Ai, Bi (i = 1, 29 * * .j W are certain constants. 

Definition 1.2. The function L(u) belongs to the class 2,~ if L(d) has the form 

Definition 1.3. The function L(U) belongs to the class SN,M if it has the form 

L(ah)=&(ah) + I$ (ah) (1.7) 

We show that expressions of the form (1.7) can be approximated by L(u) withtheproperties 
(1.3) and (1.4). To do this, we use the lemma /6,7/. 

Lemma 1.1. Let an even real functionq(u) continuous on the whole real axis vanish at 
infinity, then it allows approximation in C(- oo,m)by series of functions of the form 

(Pk = (U' + DkL’)--l 
We apply this lemma to prove the following assertion. 

Theorem 1.1. Under conditions that the function L(u) possesses the properties (1.3) and 
(1.4), it allows approximation by expressions of the form (1.7). 

Proof. We select the constants At and Bt(i= 1,2,...N)in (1.6) such that 

fi (AiaBTa) = A 
i=l 

(1.8) 

We consider the function 

Lr (U) = (L (a) - LN (11)) i u 1-l (1.9) 

On the basis of the properties (1.3) and (1.4) and condition (1.8), it follows that Lx(u) 
satisfies the condition of the Lemma 1.1. This means that the following representation holds 

Lx(u) = k$, ck (Up + Dkl1-l 

Or from conditions (1.9) and (1.10) 

L (U) = LN (U) + 1 U ( k51 ck (U” + ha)- 

(1.10) 

2. Let us consider the bilateral asymptotic solution for small and large values of h(h+ 
0, A-+&) for problems 1 and 2. 
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Exi 
lems 1 

.stence and uniqueness of the solution of the integral equation in prob- 
and 2 for L(u) of class Kv. Let Wok la,b) be a Sobolev soace of functions for r. 

which all possible generalized derivatives for order k inclusive are summable in the segment 
[a,b] with power p /8/. Let Bka(a, b) be a space of functions having all derivatives to order 
k inclusive on the segment [a,b], whose k -th order derivatives satisfy the Htjlder condition 

with index a, with the usual norm /9/: 

II f II BkaW b) = 
ti 2~~) fti) (x) 1 + r ma; bl/ f(‘)(x) - f%d I IX - YP 

I . 

Let c,(k) (a, b) denote the space of functions whose k-th derivatives are continuous with 
weight (2 - a)? (b - x)y with the norm /9/: 

k--l 

11 f IIC(k+, b) = 

Y ’ 

tz .n~;x,, 1 fci) (x) (x - u)‘++~ (b - ~)y-k+~ 1 

We denote the subspace CJk) (a, b) of even functions by Cy (a,b). 
C?(k) (a, b)of odd functions by C$'- (a, b). 

We denote the subspace 

We use the following lemma below. 

Lemma 2.1. /lo/. Let the function f(s) correspond on the segment (-1,l) to the Fourier 
series a,cosns + a, cos 2nx + . . . . . then the series 1 a, I + 12a, 1 +... converges if f(z)EB;i+’ 
(--I, I), e > 0. 

Lemma 2.2. Equation (1.1) with the additional condition (1.2) for problems 1 and 2 is 
solvable uniquely for L(u) of class UN. If f(z) is an even function and belongs to 
B;“+‘(-1, I), e> 0; hence, the estimate 

(2.1) 

holds in the class of functions C$r(-1,1) 
Below, m(A) shall denote a certain constant dependent on the specific form of the func- 

tions belonging to the class A. 

Proof. We represent the right side of the first equation in (1.1) as a Fourier series 

without limiting the generality, we consider (f(z) is an even function) 

This can always be done under the conditions of Lemma 2.2. 
Using the method shown in /l/, we obtain an expression for the stress /2/ 

da 
achA(a-2) -l,(n)cll.l(a-2)]_== x 

VI-C&a' 

I 
aco32 (OI--I)-I,(1)Rin1(a-z)]~ 

The constants Ci are determined from the system of linear algebraic equations /" \ 

S (A;B) = [AI, (A)K, (B)+ BI, (A)K, (B)](A2 - Ba)-l 

Z (m; B) = [mJ, (m)K, (B) $ BJ, (m)K,, (B)1(B2 f m*)-l 

(2.2) 

(2.3) 

The system (2.3) is evidently solvable if Ai,Bi satisfy conditions (1.6). 
Let us estimate the expression in the right side of (2.2). Under the condition of con- 

vergence of the series therein, (2.2) and (2.3) have meaning. Using the asymptotic properties 
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of the Bessel functions /ll/, and the asymptotic estimates of incomplete cylindrical functions 
in the Poisson form /12/, we obtain that the series in (2.2) and (2.3) converge if the follow- 
ing series converge: 

Xv) = Zp) = *xl akk sin knz, 2p) = x akk coy knz (2.4) 
k;=, k=l 

On the basis of Lemma 2.1 we conclude that series of the form (2.4) are convergent, hence an 
estimate of the form (2.1) follows and so does the uniqueness of the solution constructed. 

There holds the more general lemma: 

Lemma 2.3. Equation (1.1) with the additional condition (1.2) for problems 1 and 2 is 
solvable uniquely for L(u) of class KIN if f(r) is an even function and belongs to &c(-l,l), 

E > 0, the following estimate hence holds in the class of functions Ci$,(-_1,1) 

II tx (4 II 
ck+t,*(-,, I) .s m (nN) 4 11 f IIB;$y-,, 1) 

(k) 

Lemma 2.3 is proved analogously to Lemma 2.2 by using estimatesofthe right sidesof (2.3). 
We shall also denote the integral operator corresponding to the functionL(u) belongingto 

class A bv A below. 

then 

We write equation (1.1) for L(u) of class 1lN in terms of operators as 

rlnrT = f (2.5) 

2.1. (Corollary of Lemma 2.3). If the conditions of Lemma 2.3 are satisfied, 
the following estimate holds 

II ‘c II (k) 

Existence 

nNr + ZMT =f (2.6) 

Lemma 2.4. The operator IIz'z, of problems 1 and 2 is a compression operator in the 
space C$$$(-1,1) upon compliance with the conditions in Lemma 2.3 imposed on f(z) if O(h< 
h* or A> ho, where h* and ho are certain fixed values of h. 

Proof. We prove the lemma for k= 0. For k>O the proof is analogous. Letus consider 
the operator I,(T). Without limiting the generality, we set M=l. We have 

1 

22, (T) = T s T(4) exp 
[ 
-p&z, I G 

-1 

We represent Z,(T) in the form of the series 

ck cm km 

We find the coefficients ck from the following formulas 

Utilizing (2.7), we find the following estimates 

(2.7) 

where the constants M* and M" are independent of A. Hence, by using estimates analogous to 
the estimates in Lemmas 2.2 and 2.3, we obtain that h can be selected in such a manner that 
the operator n,-lz,, will be a compression operator /13/ under the condition of this lemma. 

On the basis of Learna 2.4 by applying the Banach principle of compressed mappings to the 
equation 
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we obtain the proof 
strain& imposed. 

‘I +- n$&r = Il$f 

of the existence and uniqueness of 

(2.8) 

the solution of (2.6) under the con- 

There is therefore proved the following theorem. 

Theorem 2.2. Equation (1.1) with the additional condition (1.2) (problems 1 and 2) is 
uniquely solvable in the space C$,!+$z(--l,l) for L (u) of class $,,, if f(z) is an even function 
and belongs to Bitp(-i,I), e> 0 for O<jl< h* or h> ho where h* and ho are certain fixed 
values of k and thefollowingestimate holds 

II r (4 II ch.tX,.C_I 1j < m(nN7 s~fs k, 11 f Ils;yc+) <Q+ 

Finally, we formul.ate the following theorem. 

Theorem 2.3. Equation (1.1) with the additional condition (1.2) is solvable uniquely 
in the space C@,(-f,f) for problems 1 and 2 if f(s) is even function and belongs to Bzly (-1, 

I)+ e> 0 for 0 <h<h* or A> ho, where h* and ho are certain fixed values of h and the 
following estimate holds 

II 7z (4 II @)+ ck+~,~-lJ) 
< m (nN, x,7 k) Ii f ii$~c_r,l, 

Theorem 2.3 follows from the assertions ofTbeoremsl.l and 2.2 and is proved by using the 
method known in perturbation theory which is based on successive approximations, exactly as 
in /9/. 

3. We consider the bilateral asymptotic solution of problem 3 for small and large values 
of h(h-+O,h+oo). 

Existence and uniqueness of the solution of the integral equation of pro- 
blem 3 for L(U) of Class rIN. We assume the results of the theory of Fourier-Bessel ser- 
ies known /14/. Moreover, we utilize the following assertions. 

Lemma 3.1. /15/. Let a function f(x) be defined and differentiable 2s times in the 

segment[O, I] (s> 1) , where 
1) f (O)= f")(a)= . ,f(n+l) (0)x 0; 

2) f(“)(x) is bounded (this derivative can also not exist at individual points); 

3) f(l)=...= f(rr-2) (l)=O. 

Then the inequality 
1 U, I< Chi2S+‘~J) (c = const) 

is valid for the coefficients of the Fourier-Bessel function f(x) 

Lemma 3.2 /15/. Under the conditions of Lemma 3.1 for s> 1 

p > 0, ( anJp (h,,;c) I< fzh,‘2b”3 (ff = const), vx E [o, 11 
p > -I/Z, j anJp (A,& I< Lz-‘~XL2” (L = eonst). vx E [O, I] 

Definition 3.1. We shall say that the function f(x), absolutely integrable on a seg- 
ment [0,11, satisfies the condition Mk(k = 0,l)if a Fourier-Bessel expansion holds (IV," 
(-I,$) is a certain constant) 

f Ix) = jZ, n$lk (Ankx)+ j$I an“Ank / < M,k (- 1 I 1) < cc, k=O,f (3.1) 

We note that the conditions of Lemma 3.1 for S = 2 are sufficient for the inequality (3.1) t0 

hold. 
We consider (1.l.) for an f(s) of the following form 

f (3~) = GoE fX + 211 (2)) 
(3.2) 

Lemma 3.3. If X(s) is an odd function and satisfies the condition Mr,then (1.1) of 
problem 3 is uniquely solvable for L(u) of the class IIN in the classof functions C!~~(-%,~) t 
and the following estimate holds 

ilr(x) II ( 1- C,/oy (_l , 8 1) <m (nN: Mx’(~~ I) (3.3) 

Proof. Since the function X(2) satisfies the condition M,,. then it can be represented 

in the form of the Fourier-Bessel series 
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X rz) = 5 bkJ, (pkz) 
k-1 

Utilizing the method in /l/, we obtain an expression for the stress /3/ 

sinAz zsh A 
Z(z;A)=y - 

+JQ-z~ (i$l/l--.a)_ 

The constants C~ are determined from the system of linear algebraic equations 

4 + B&-l 

b(O)B; 
+j&[+:pj)=O (k:=i,Z,...,N) 

(3.4) 

(3.5) 

The system (3.5) is solvable uniquely if di,Bk satisfy conditions (1.6). Considering (3.4) 
and (3.5), we see that the assertion of the lemma and the estimate (3.3) hold when the esti- 
mate (3.1) (condition Ml)is satisfied. In this case the relation between the moment and the 
angle of rotation has the form 

where we have introduced the notation 

F (A) = Aw2 (A ch A - sh A); R (FL) = ~-~(sin p - fl cos p) 

We consider (1.1) for problem 3, as written in the form (2.5) (considering j(r) to have 
the form (3.2)). 

Theorem 3.1. (Corollary to Lemma 3.3). If the conditions of Lemma 3.3 hold, then the 
operator IIN is reversible and the following estimate holds 

II T(X) II (OF c+ (-1.1) 
< 11 II-,’ II mMx’ (- Cl) 

Existence and uniqueness of the solution of the integral equation in pro- 
blems 3 for L(U) of the class SN,M. We consider equation (1.1) of problem 3 for j(z) 
in the form (3.2) and L(u) of class SN.~ written in the operator form (2.6). 

LeUE:a 3.4. The operator I'I-,'z, of problem 3 is a compression operator in the space 
C$- (-1,1) upon satisfaction of the conditions in Lemma 3.3 if O(h(h* or h>h", where 
h* and ho are certain fixed values of h. 

Proof. We consider the operator x,(t). Without limiting the generality, we set M = 1 

and we have 

We represent z,(r) as the Fourier-Bessel series 

w)=~&Jlw) 

The coefficients ak are found from the following formulas 
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(3.6) 

Using the asymptotic estimates of cylindrical functions of imaginary argument /ll/, we 
obtain the following estimates from (3.6) : 

where the constants iM*and M"are independent of h. Hence, analogously to the estimates in 
Lemma 3.3 we obtain that ?, can be selected in such a manner that the operator IIN-rZM willbe 
a compression operator /13/ under the conditions of this lemma. On this basis, by applying 
the Banach principle of compressed mappings to an equation of the form (2.8), we obtain the 
proof of the existence and uniqueness of the solution of (1.1) underthe constraints imposed. 
This means that the following estimates hold. 

Theorem 3.2. Equation (1.1) of problem 3 is solvable uniquely in the space C!yi-(-1,1) 
for L(u)of the class s,,, if X(X) is an odd function and satisfies the condition M, for O( 
a<I"* or h>h" and the following estimate holds: 

Finally, we formulate the following theorem. 

Theorem 3.3. Equation (1.1) is solvable uniquely for problem 3 in the space C!y!-(-l,1) 
if X(z) is an odd function and satisfies condition n/r, for O<h<h* or h > h", where h* and 
ho are certain fixed values of h, hence, the following estimate holds: 

The proof of Theorem 3.3 follows from the assertions in Theorems 1.1 and 3.2 and is 
analogous to that carried out in /9,16/. 

4. We consider the bilateral asymptotic solution of problem 4 for small and large values 
of h(h+O,h+m). 

Existence and uniqueness of the solution of the integral equation of pro- 
blem 4 for L(U) of the class IIw. Let us consider equation (1.1) of problem 4 for an 
f(z) of the following kind: 

(4.1) 

Lemma 4.1. If cp(z) is an even function and satisfies the condition MO, then (1.1) 
for problem 4 is solvable uniquely in the class of functions C$+(--1,1) for L (u.) of the class 
nN and the following estimate holds: 

(4.2) 

Proof. Since 'p(z) satisfies the condition M,,, then it can be represented in the form 
of a Fourier-Bessel series 

m 

‘p (2) = ,zl bkJo (PXZ) 

Utilizing the method in /l/, we obtain an expression for the stress /4/ 

(4.3) 

f, b&i! (Gj) f (2; Pj)] 
j=l 
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Here 

where 

The constants Ci are determined from the system of linear equations 

irl 

z$,fl(+; pj)=O, k=1,2 ,.... N 
j=l 

(4.4) 

The system (4.4) is solvable uniquely if Ai, B, satisfy conditions (1.6). Considering 
(4.3) and (4.4), it can be seen that if the function m(z) in the right side of (4.1) satis- 
fies the condition ilf,,then the series in (4.3) and (4.4) are convergent, hencetheassertion 
of the lemma and the estimate (4.2) follow. In this case the relation between the applied 
force and the settling of the stamp has the form 

P =4n&(O) [L;;'(O) + $rci&'J. ShAih-' + j$IbjL;;'(kpj) &.Gnpjh-l] 

We consider equation (1.1) for problem 4 written in the form (2.5) (considering f (4 to 
have the form (4.1)). 

Theorem 4.1. (corollary of Lemma 4.1). If the condition of Lemma 4.1 hold, then the 
operator ITN is reversible and the following estimate holds: 

II 'c (5) II No+ c,,* (_, 1) < II KG II mM,"(- 1, 1) 

Existence and uniqueness of the solution of the integral equation of pro- 
blem 4 for Lfu) of class Sx,!& We consider equation (1.1) of problem 4 for an f(x) of 
the form (4.1) and L(u)of the class SN,M written in the operator form (2.6). 

Lemma 4.2. The operator ZN-rxM of problem 4 is a compression operator in the space 
C$y!'(-1,l) upon satisfaction of the conditions of Lemma 4.1 if O<h<h*or h>h", where h* 
and ho are certain fixed values of ?*. The proof is analogous to the proof of Lemma 3.4. 

This means that the following holds! 

Theorem 4.2. Equation (1.1) for problem 4 is solvable uniquely inthe space c!~~(-l,!) 
for L(u)of the class SN,M if 'P(I) i for 
o<?k<?&* 

s an even function and satisfies the condition M, 
or h> h", where h* and ho are certain fixed values of h and the estimate holds 

Finally, we formulate the following theorem. 

Theorem 4.3. Equation (1.1) for problem 4 is solvable uniquely in the space C$'y (-i,l). 
if 'p(x) is an even function and satisfies the condition M, for O(h(h* or h> h@, where h* 
and LO are certain fixed values Of A, and the following estimate holds: 

II r(z) 0 prc_, ,,<mUhlL)l~~~o(- 1,1) , 

The proof of Theorem 4.3 follows from the assertions of Theorems 1.1 and 4.2 and is 
analogous to that carried out in /9,16/. 

For a numerical realization the expansion of the range of applicability of the method 
elucidated in h can be achieved because of improvement of the approximation of L(U) byfunc- 
tions of the class IIN. A good approximation is successfully achieved here by using the fol- 
lowing algorithm. 

We map the function L(U) by the mapping y=$-$ from the interval (O,co) onto the segment 
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(O,i),(u= cl/y(Y- I)-'). We approximate the function 1/m and 1/L-'(y) on the segment (0.1) by 
N-th order Bernshtein polynomials (or by Chebyshev nodes), and we obtain 

Then 

~~ (u) = ( {;I ai*@) ( $ biuzi)-l 
i=l (4.5) 

By determining the roots of the numerator and denominator in (4.5), we find the desired 
values of Ai, Bi ii = i, 2, . . ., NJ. Such a modification of the method described in /16/ pemlits 
avoiding the presence of an N -tiple root in the denominator of the approximation found. 

Specific examples of the construction of solutions by the method elucidated were consid- 
ered the papers /Z-4/. 

The author is grateful to V.M. Aleksandrov for constant attention to the research. 
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