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ASYMPTOTIC SOLUTIONS OF CONTACT PROBLEMS OF ELASTICITY THEORY
FOR MEDIA INHOMOGENEQUS IN DEPTH

S.M. AIZIKOVICH

There are considered the dual integral equations generated by contact problems for
half-spaces and half-planes inhomogeneous with depth., There is extended the method
from /1/ for the construction of asymptotic solutions of the problems under consid-
eration., Correctness of classes and the solvability of equations are established,
and the approximate method proposed for their solution is given a foundation.

1. Contact problems for half-spaces and half-planes inhomogeneous with depth reduce, in
a number of cases /2—4/, to finding the solution of a dual integral equation of the form (A

is a geometric parameter)
d

7 (@p(@) L (@) B da=f(), |z|<1 (1.1)

c

d
$7 (@B z)da=0, |z|>1

In particular, in the problem of shear of an inhomogeneous half-space by a stamp /2/
(problem 1) and in the problem of impression of a stamp in an inhomogneous half-plane (problem
2) p@=lal", Blaz) =% c¢=—d=o
where (l.1l) is considered with the additional condition

1 o 1
Sr(z)dz:]), r(z):% S T (&) emio*dat, St(g)eiaidng(a) (1.2)

—1 o0 —1

and P is the shearing force (problem 1) or the impressing force (problem 2) acting on unit
length of stamp. Find 7 (z).
For problems on the torsion by a circular stamp /3/ (problem 3) and on the impression of
a circular stamp in an elastic half-space that is inhomogeneous with depth /4/ (problem 4)
p@ =a?, B, r)=al;(ax), ¢c=0 d=oo

k = 1 for problem 3, and k = 0 for problem 4. Find 1 (r). Here
3 1
@)=\ T @al@)da, T@=\7() x(@)pdp
0 0

Upon satisfying the conditions
min G(y)>e1 >0, max G)<Kc< oo
VE(©, =) VE(0, o)
lim G(y)=const (problems 1 and 3)
y—x

min 0(y) >c¢, >0, max 0(y) e oo
VE(0, =) YE, )

_ A terwl
i X EE
ilme(y)::const (problems 2 and 4)

where G (y) is the shear modulus and p (¥) and A (y) are Lam€ coefficients of the half-space, and
¥ is the distance from the surface of the medium, it can be shown /2—4/ that the transforms
of the kernel [ (u)possess the following properties (B and D are constants):
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Solutions of contact problems for media inhomogeneous in depth 117

Lw=A+B|ul|+0 @) u—>0 (1.3)

L(u)=1+D]u|"1+0(u"“), u— 0o (1.4)

4 =1im G (0) 6™ (4) (problems 1,3) 4 =lim6(0) 0 (y) (problems 2,4)  (1.5)
- lim

For multilayer media the properties of the compliance functions, analogous to (1.5), were
noted in /5/. The properties (1.5) mean that the value L(0) for the problems under considera-
tion is independent of the manner in which the elastic moduli vary in the half-space fromy =0
to ¥ — o, and are determined only by their values for y=0 and y— o, Graphically this ap-
pears as follows: if the set of curves describing certain laws of variation of the elastic
moduli with depth have identical values on the surface of the half-space and as y— o, then the
graphs of the corresponding transforms L (u)
L(0) =4 and converge at one point L (c0) =1,

Let us introduce the following definitions:

of problems 1 and 3 will issue from a common point

Definition 1.1. The function L (u) belongs the class Iy if L (@A) has the form

N
L(ad) = Ly (@h) = [] (o + 4242 (o + B2 (1.6

i=l

(B; — By) (4; — 4x) # 0
ek

Here A;, B; (i = 1,2,...,N) are certain constants.

Definition 1.2. The function L () belongs to the class Zu if L (@A) has the form

M
cA1a
L(ah) = L} (ah) = Z 1_%
k=1

Definition 1.,3. The function L (#) belongs to the class Sy p if it has the form

L(ah) =Ly (@b) + Ly (@) (1.7

We show that expressions of the form (1.7) can be approximated by L (u) with the properties
(1.3) and (1.4). To do this, we use the lemma /6,7/.

Lemma 1.l. Let an even real function @ (¥) continuous on the whole real axis vanish at
infinity, then it allows approximation in C (— oo, co) by series of functions of the form
P = (u* + Dy
We apply this lemma to prove the following assertion,

Theorem 1.1, Under conditions that the function L (u) possesses the properties (1.3) and
(1.4), it allows approximation by expressions of the form (1.7),

Proof. we select the constants 4; and B;(i=1,2,...N)in (1.6) such that
N
I (A2BH) =4 (1.8)

i=l
We consider the function

Ly () = (L (w) — Ly () [u | (1.9)
On the basis of the properties (1.3) and (1.4) and condition (1.8), it follows that Lg (1)
satisfies the condition of the Lemma 1.1. This means that the following representation holds

Lz(u)= kgl e (ut 4 Dyt (1.10)

Or from conditions (1.9) and (1.10)
L(u)=Ly(@)+]u| 3 ox(u*+ D)

2., Let us consider the bilateral asymptotic solution for small and large values of A (A —
0, A > ) for problems 1 and 2.
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Existence and uniqueness of the solution of the integral equation in prob-
lems 1 and 2 for L(u) of class Ilx. rLet W, (a. b) be a Sobolev space of functions for
which all possible generalized derivatives for order k inclusive are summable in the segment
[a, b] with power p /8/. Let By® (g, b) be a space of functions having all derivatives to order
k inclusive on the segment [a, b], whose % -th order derivatives satisfy the H8lder condition
with index @, with the usual norm /9/:

I3

I "Bk"‘("' »= igo xg[?ml @1+ x,?é[)fz. b]I ®(z) — 1%Yy) [ |z — y=

Let C;® (@, b) denote the space of functions whose Fk-th derivatives are continuous with
weight (z — a)? (b — 2)¥ with the norm /9/:
k-1

= 3 max |10 (z) (z — ajr¥i (b — z)yrhi

Il e
" ||c§’)(°’ Y {=gxc(a, b]

We denote the subspace (,( (g, b) of even functions by Cg,k“ (a, ). We denote the subspace
Cy™® (a, b)of odd functions by Cg‘)' (a, b).

We use the following lemma below.

Lemma 2.l1. /10/. Let the function f{z) correspond on the segment (-1,1) to the Fourier
series a, cos iz -+ 4, cos 2nz + . . . ., then the series |g, |+ |28y | + ... converges if f(z) = B{™*
(—11 1)7 2 > 0'

Lemma 2.2, Equation (1.1) with the additional condition (1.2) for problems 1 and 2 is

solvable uniquely for L (u) of class Hy. If f(x) is an even function and belongs to
BY™® (—1, 1), € > 0; hence, the estimate

15 @ g, <m TN o

holds in the class of functions CY)' (—1, 1)
Below, ™M (4) shall denote a certain constant dependent on the specific form of the func-
tions belonging to the class 4.

, m(Ily) =const (2.1)

. -1, 1) -1, 1)

Proof. We represent the right side of the first equation in (l.1) as a Fourier series
without limiting the generality, we consider (f(z) is an even function)

o
f(x) = —‘.1;— + Z a, cos knz

k=1

This can always be done under the conditions of Lemma 2.2,
Using the method shown in /1/, we obtain an expression for the stress /2/

» N A o &
B i PO aphn (2.2)
0 sy Yee(3 ) 2T
1
D (A, ) :f-_-l‘(éqwig[l (A)ach A{e —z) — I {A)ch ~1(a_z)]*d°‘—
Vi—ﬂ P ° ! ’ V1—-—a-’
Ji (b ' e
o
4 —— —t la—z)— I, ({) sin{ (&t — —_—
F(l, 1) T +l$[]o(l)acos (@—z)— I () sinl (o — )] Vice
The constants (; are determined from the system of linear algebraic equations
B
g Kk o
- (4, B PI‘“(T) ‘ i B
Z 0,8 (#T) +-—Ek——— - ZIWZ (mn:T"> =0,k=1,2,... N (2.3)
i=1 —_— m=)
A

S (4; B) = AT, (A)K, (B) + BI, (A)K, (B){A* — B!
Z (m; B) = [mJy (m)K;y (B) - BJ{ (m) Ky (B)(B? - m¥)~1

The system (2.3) is evidently solvable if 4;, B; satisfy conditions (1.6).
Let us estimate the expression in the right side of (2.2). Under the condition of con-
vergence of the series therein, (2.2) and (2.3) have meaning. Using the asymptotic properties
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of the Bessel functions /11/, and the asymptotic estimates of incomplete cylindrical functions
in the Poisson form /12/, we obtain that the series in (2.2) and (2.3) converge if the follow-
ing series converge:

20 = W okl 2P = aksinknz, 2P = 3| akcosknz (2.4)
=1 k=l k=1

On the basis of Lemma 2.1 we conclude that series of the foxm (2.4) are convergent, hence an
estimate of the form (2,1) follows and so does the uniqueness of the solution constructed,

There holds the more general lemma:

Lemma 2.3, Equation (1l.l) with the additional condition (1.2) for problems l'and 2 is
solvable uniquely for L (u) of class Ily if f(z) is an even function and belongs to BYi®(—1, 1),
¢>>0, the following estimate hence holds in the class of functioms C{Pf, (—1, 1)

() "0&,4-1.1) Sm (Tl )N ggere

Lemma 2.3 is proved analogously to Lemma 2.2 by using estimates of the right sides of (2.3).

We shall also denote the integral operator corresponding to the function L (#) belonging to
class 4 by A below.

We write equation (1,1) for L (u) of class Iy in terms of operators as

Iyt = f (2.5)

Theorem 2,l. (Corollary of Lemma 2,3). If the conditions of Lemma 2.3 are satisfied,
then the following estimate holds

I (=) ”cﬁ.’ij,, TR (| (k) £ 1 gz

(=1,1) el (<11

Existence and uniqueness of the solution of the integral equation of pro-
blems 7 and 2 for L(u) of the class Sy y. Equation (1.1) can be written in terms of the
operator for L (u) of class Sy p in the form

Iyt + Zyt=f (2.6)

Lemma 2,4, The operator II§Z, of problems 1 and 2 is a compression operator in the
space CWT,, (—1,1) upon compliance with the conditions in Lemma 2.3 imposed on f () if O0<< A <<
A* or A >>A% where A* and A are certain fixed values of A,

Proof. We prove the lemma for k=0. For k>0 the proof is analogous. Let us consider
the operator I, (1). Without limiting the generality, we set M =1. We have

1

o= {r@en[-TE—n]a

-1
We represent 3, (1) in the form of the series
cd
Cy
L=+ Y ccosknz
=1
We find the coefficients ¢, from the following formulas

1

1
4t D\ ( D .7
ck=m[(—i)“‘exp (—T)Sr(i)chTadE-hSr(a)cosknidg], k=0,1,2,... (2.7
[ 0
Utilizing (2,7), we find the following estimates
o
max |2, (M VI=2|< D) e [<AM*, =0 (A%
2E(-1,1) k=0
max [Z (D VI—2<< D) e [<AMY, A—soo (A>AY
2E(~1,1) k=0
where the constants M* and M° are independent of A. Hence, by using estimates analogous to

the estimates in Lemmas 2,2 and 2,3, we obtain that 2 can be selected in such a manner that
the operator IIyZ, will be a compression operator /13/ under the condition of this lemma.

On the basis of Lemma 2,4 by applying the Banach principle of compressed mappings to the
equation
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1 NN Ept = TR f (2.8)
we obtain the proof of the exigtence and uniqueness of the solution of (2.6) under the con-

straints imposed.
There is therefore proved the following theorem.

Theorem 2.2, Equation (l.l) with the additional condition (1.2) (problems 1 and 2) is
uniquely solvable in the space Cf, (—1,1) for L (u) of class Sy, u if f(z) is an even function
and belongs to BYH®(—1,1), 6> 0 for O0<<A<<M or A>) where A* and A’ are certain fixed
values of 4 and the following estimate holds

=@ S (s Sans KYNF 1 oreve

3
”CL’J;—LU f£8,1)
Finally, we formulate the following theorem,

Theorem 2.3. Equation (1.1} with the additional condition (1.2) is solvable uniquely
in the space C{i),(—1, 1) for problems 1 and 2 if [ (z) is even function and belongs to BYg® (—1,
1), e>0 for 0 <A<t A* or A>> A where A* and )° are certain fixed values of A and the

following estimate holds
Il 7 (=) “c,&’i%*,z(-x.n m (T Ty Bl rmre

Theorem 2.3 follows from the assertions of Theorems 1.1 and 2.2 and is proved by using the
method known in perturbation theory which is based on successive approximations, exactly as
in /9/.

3. wWe consider the bilateral asymptotic soclution of problem 3 for small and large values
of A{(h =0, > o0}

Fxistence and uniqueness of the solution of the integral equation of pro-
blem & for L(u) of Class Ily. We assume the results of the theory of Fourier—Bessel ser-
ies known /14/. Moreover, we utilize the following assertions.

Lemma 3.1. /15/. Let a function f{z) be defined and differentiable 25 times in the

segment [0, 1] (s > 1) , where 1) 1) FO D) . ()=

2} §® (2) is bounded (this derivative can alsc not exist at individual points);
Hi)y=...=fe0(1)=0.

Then the inequality
‘ a, I Q; ch—(28+1):) (c _— const)

is valid for the coefficients of the Fourier— Bessel function f{(z}

Lemma 3.2 /15/. Under the conditions of Lemma 3.1 for s> 1

P20, |and, (o) | < HA®Y (B =const), Vze(0,1]
p>—Ys ey (A< Lot (L=const}), Vre=[0,1]

Definition 3.1. we shall say that the function f(z), absolutely integrable on a seg-
ment [0,1], satisfies the condition M, (k = 0, 1)if a Fourier-Bessel expansion holds (M)
(=1, 1) is a certain constant)

f{=) =7§1 Ty (A Fz) n% | bt [ <M (=~ 1,) < oc, k=0,1 (3.1)

We note that the conditions of Lemma 3.1 for § =2 are sufficient for the inequality (3.1) to
hold.
We consider (1.1l) for an f{z) of the following form

f (2) = Gog [z + 2y (@] (3.2

Lemma 3.3. 1If %{%) is an odd function and satisfies the condition M, then (1.1) of
problem 3 is uniquely solvable for [ (u)} of the class IlIy in the class of functions cP (-1, 1) .
and the following estimate holds

He@ -, <m () M2 (1 D) (3.3)

Proof. Since the function X (#) satisfies the condition M, then it can be represented
in the form of the Fourier— Bessel series
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%)= E bk‘,l (l"kx)
k=1

Utilizing the method in /1/, we obtain an expression for the stress /3/

N
Gy (0 - .4 .4
"(’):4_2,(‘_)5[1‘;\!1(0)#—:_'}‘?4_2;0’1; (z,Ti-) (3.4)
i=1
. sin xp. z sinp cos utdt
Sl = TV a1Vi-= § P+ Ve—a

sin Az zsh A _
: Yo asvi-a)

Z(z; A) =

1
S ch Atde

B VEmaerve-o)

The constants c,» are determined from the system of linear algebraic equations

4 14-BA1 (3.5)
c __*__i) )= k=12, ... N
; o Mt Zbd( u) =0 ® )
X AchA4-Bshd ) pcosp + Bsinp
p(BiA)= BT — A2 ;o d(BY = -LI\; (Ap) (B> F A3w?)

The system (3.5) is solvable uniquely if 4;, By satisfy conditions (1.6). Considering (3.4)

and (3.5), we see that the assertion of the lemma and the estimate (3.3) hold when the esti-

mate (3.1) (condition Mi)is satisfied., In this case the relation between the moment and the
angle of rotation has the form

M = 16GoO)ea* [5-LF (O + Z CF(AMT + Z biLR (i) R a7 |

i=1

where we have introduced the notation
FA)=A"%(AchA —shA); R(u)=p2(sinp —pcosp)

We consider (l.l1) for problem 3, as written in the form (2.5) (considering f(x) to have
the form (3.2)).

Theorem 3,1, (Corollary to Lemma 3.3). If the conditions of Lemma 3.3 hold, then the
operator IlIy is reversible and the following estimate holds
L[ IN | mMyt (—1, 1)

1e@ g <

Existence and uniqueness of the solution of the integral equation in pro-
blems 8 for L (u) of the class Sy u. We consider equation (1.1) of problem 3 for f(z)
in the form (3.2) and L (u) of class Sy ,u written in the operator form (2.6).

Lemma 3,4, The operator IIIV‘ZM of problem 3 is a compression operator in the space
Cﬁ‘/")' (—1, 1) upon satisfaction of the conditions in Lemma 3.3 if Q<A <CA* or A > A°, where
A* and )° are certain fixed values of A.

ProoZ. We consider the operator Zum(r). Without limiting the generality, we set M =1
and we have

oo

A1
%, (t) = Def S o) [ § =gk 71 (020 (vp)dv ] dp
0
We represent X, (1) as the Fourier —Bessel series

Zi ()= é} axd1 (W)

The coefficients a; are found from the following formulas
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f1
2eh1 .
W= T e DAY [§ T(p) pJ1 (prr) dp — (3.6)

pado () Ky (%) S 1(p)pJ1 (p;—) dp]

Using the asymptotic estimates of cylindrical functions of imaginary argument /11/, we
obtain the following estimates from (3.6):

oo

max |21(T)V1—1‘2[ SC D Jax | <AMM*, A—0 (A< A¥%

xe=(—1, k=

max |3 (1) ]/1—12|<02|ak|< MM, A0 (A>A9)

xe&(—1,1)

8
A

where the constants M* and M° are independent of A. Hence, analogously to the estimates in
Lemma 3.3 we obtain that A can be selected in such a manner that the operator Il 13, willbe
a compression operator /13/ under the conditions of this lemma. On this basis, by applying
the Banach principle of compressed mappings to an equation of the form (2.8), we obtain the
proof of the existence and uniqueness of the solution of (1,1) under the constraints imposed.
This means that the following estimates hold.

Theorem 3.2. Equation (1.1) of problem 3 is solvable uniquely in the space (i) (—1, 1)
for L (u)of the class Sy p if X% () is an odd function and satisfies the condition M, for 0 <
A<ZA* or A>A° and the following estimate holds:

T () ”c“’)'( gy Sy Zag) Myt (— 1, 1)

Finally, we formulate the following theorem.
Theorem 3.3. Equation (1.1} is solvable uniquely for problem 3 in the space C\{)" (—1, 1)

if X (*) is an odd function and satisfies condition M, for 0 <<A<<A* or A A0 where A¥ and
A° are certain fixed values of A, hence, the following estimate holds:

1) ey < (Tl 3oc) M2 (= 1)

The proof of Theorem 3,3 follows from the assertions in Theorems 1.1 and 3.2 and is
analogous to that carried out in /9,16/.

4, We consider the bilateral asymptotic solution of problem 4 for small and large values
of A —0,)% - o0).

Existence and uniqueness of the solution of the integral equation of pro-
blem 4 for L (u of the class Ily. Let us consider equation (l.l) of problem 4 for an
f(2) of the following kind:

f@=28,0)801+ ¢ (] (4.1)

Lemma 4.1, If @(z) is an even function and satisfies the condition M,, then (1.1)
for problem 4 is solvable uniquely in the class of functions C“’)‘L (—1,1) for L (u) of the class
Iy and the following estimate holds:

17@ Uy, < W) M (—1,1) (4.2)

-1 =

Proof. Since ¢ (x) satisfies the condition M then it can be represented in the form
of a Fourier—Bessel series

@)= 3 bufo(be2)
Utilizing the method in /1/, we obtain an expression for the stress /4/

T($)=290(0)6n'1[l, ©) V1__+Zc,1p (z, )+ (4.3)

Z biLH () f (2 s) ]
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Here .
ch 4 sh Atdt
= .y g .
‘ll)(x,A) V1 2 ‘xVF—IZ,
1
cos & sintedt
1o o)== +e§x e
The constants C; are determined from the system of linear equations
= B, 4, - ~
) ca (Tk;"x‘_)*' Ly OABF + (4.4)
i=1
Zblﬁ( :I"J) 0, k=1,2,....N
=1
where

BchA+4Ash A | __ _Bcosp —psinp
—BE_—a p(B,p)= Iy () (B - A0u%)

(l(B, A)=
The system (4.4) is solvable uniquely if A;, By satisfy conditions (l.6). Considering
(4.3) and (4.4), it can be seen that if the function @ (z) in the right side of (4.1) satis~
fies the condition Mg, then the series in (4,.3) and (4.4) are convergent, hence the assertion
of the lemma and the estimate (4.2) follow. In this case the relation between the applied
force and the settling of the stamp has the form

P = 4nad, (0) [Ly (0) + 2 C; AT A sh A0 + 2 b;Ly'(Ap;) ny*A sin pa1]

We consider equation (1l.l) for problem 4 wrltten 1n the form (2.5) {(considering f(z) to
have the form (4.1)).

Theorem 4.1. (corocllary of Lemma 4.1). If the condition of Lemma 4.1 hold, then the
operator IIy is reversible and the following estimate holds:

1) g, IR I (=1,

Existence and uniqueness of the solution of the integral equation of pro-
blem 4 for L (u) of class Sy,u We consider equation (l.1) of procblem 4 for an f(z) of
the form (4.1) and L(u) of the class Sy,M written in the operator form (2.6).

Lemma 4.2, The operator IIxy18y of problem 4 is a compression operator in the space
C“’)*( 1,1) upon satisfaction of the conditions of Lemma 4.1 if 0 <A <<A*or A>A?, where A*
and A’ are certain fixed values of A, The proof is analogous to the proof of Lemma 3.4.

This means that the following holds:?

Theorem 4.2, Equation (1.1) for problem 4 is solvable uniquely in the space Ci/" (—1,1)
for L (u)of the class Sy,m if @ (%) is an even function and satisfies the condition M, for
0<M<<M or A>MN, where 3* and A? are certain fixed values of ) and the estimate holds

@} <o>+(—1 1) <m My, Sp) Mo* (— 1,1)

Finally, we formulate the following theorem,

Theorem 4.3, Equation (1.1) for problem 4 is solvable uniquely in the space C‘O)" (—1.1).
if ¢ (¥) is an even function and satisfies the condition M, for Q< A<CA* or A>> A%, uhere }*
and A are certain fixed values of A, and the following estimate holds:

Iz@) | (0% gy <IN B) Mo (— 1,1)

The proof of Theorem 4.3 follows from the assertions of Theorems 1.1 and 4,2 and is
analogous to that carried out in /9,16/.

For a numerical realization the expansion of the range of applicability of the method
elucidated in A can be achieved because of improvement of the approximation of L (¥) by func-
tions of the class IIy. A good approximation is successfully achieved here by using the fol-
lowing algorithm.

We map the function L{x) by the mapping y= from the interval (0, ) onto the segment

u?
u? + c?
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(0, 1), (u= tVy(y——irﬂ. We approximate the function VL (y) and VL '(y) on the segment (O.l) by
N-th order Bernshtein polynomials (or by Chebyshev nodes), and we obtain
N I
VIigw= Doy, Vidm=3 oy
i=1 i=1

Then

N N . N PR
Ly = (3 aru?) (3 )™ (4.5)

i=1 i=1

By determining the roots of the numerator and denominator in (4,5), we find the desired
values of 44, By (i=1,2,...,N). Such a modification of the method described in /l6/ permits
avoiding the presence of an /¥ -tiple root in the denominator of the approximation found.

Specific examples of the construction of solutions by the method elucidated were consid-
ered the papers /2—4/.

The author is grateful to V.M. Aleksandrov for constant attention to the research.
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